TD révisions : Equilibres de précipitation

Exercice 1 : Solubilité de l'oxalate d'aluminium

- a) Déterminer la solubilité de l'oxalate d'aluminium (III) dans l'eau pure en négligeant le caractère basique des ions oxalate (C₂O₄²⁻).
- b) Etablir le diagramme d'existence de l'oxalate d'aluminium (III) pour : $[Al^{3+}] = C_0 = 0,10 \text{ mol.L}^{-1}.$
- c) Que se passe-t-il si on ajoute, sans variation de volume, une quantité $n=4,0.10^{-6}$ mol d'oxalate de sodium $Na_2C_2O_4$, noté Na_2Ox , à un volume V de solution de nitrate d'aluminium à 0,10 mol. L^{-1} :
 - V = 500 mL
 - V = 2,000 L

Données: $pK_s(Al_2(C_2O_4)_3) = 18,2$

Exercice 2 : Précipitations

- 1) Soit une solution de $CaCl_2$ à 0,01 mol.L⁻¹. Quelle quantité de Na_2SO_3 faut-il ajouter à 100 mL de solution pour observer le précipité de $CaSO_3$ (pK_s = 4) ?
- 2) On mélange 10,0 mL d'une solution de sulfate de sodium à 1,0.10⁻³ mol.L⁻¹, 20,0 mL d'une solution de chlorure de magnésium (II) et 20,0 mL d'une solution de chlorure de baryum (II) toutes deux à 2,0.10⁻³ mol.L⁻¹.
 - a) Observe-t-on la formation de précipité(s)? Lesquels?
 - b) Déterminer la composition de la solution à l'équilibre.

Données: $pK_s(MgSO_4) = 2.3$ $pK_s(BaSO_4) = 9.9$

Exercice 3: Effet d'ions communs

Déterminer la solubilité de l'iodate d'argent de $pK_s = 7,5$

- a) dans l'eau pure
- b) dans une solution d'iodate de potassium à :
 - $C_0 = 3.5.10^{-1} \text{ mol.L}^{-1}$
 - $C_0 = 1,0.10^{-4} \text{ mol.L}^{-1}$

Exercice 4: Précipitations et pH

Soit une solution de FeCl₃ de concentration C. L'ion Fe³⁺ est un acide : $pK_a(Fe^{3+}/Fe(OH)^{2+}) = 2,2.$

- a) Pour quelle valeur de C, le pH de la solution est-il tel que l'hydroxyde de fer (III) $Fe(OH)_3$ (pK_s = 38) commence juste à précipiter?
- b) Calculer le pH.

Exercice 5: Chlorure et bromure d'argent

On dispose d'une solution aqueuse de chlorure de sodium $C_1 = 0,1$ mol. L^{-1} et de bromure de sodium $C_2 = 0,2$ mol. L^{-1} .

On dispose d'autre part d'une solution de nitrate d'argent $C = 1 \text{ mol.L}^{-1}$.

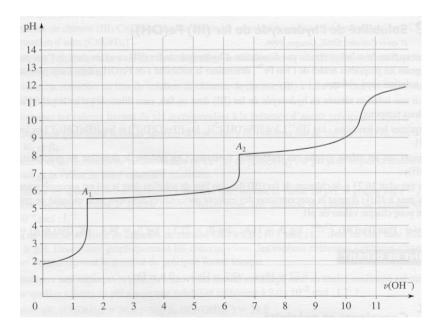
- 1) Tracer les domaines d'existence des précipités AgCl ($pK_{s1} = 9,7$) et AgBr ($pK_{s2} = 12,3$) en fonction de pAg pour les concentrations C_1 en Cl^- et C_2 en Br
- 2) Proposer un mode opératoire pour séparer les ions chlorure et bromure de la première solution.
- 3) Avec quelle précision effectue-t-on cette opération?

Exercice 6 : Précipitations sélectives de sulfures

Une solution aqueuse acide contient des ions Ni^{2+} à $1,0.10^{-2}$ mol. L^{-1} et des ions Zn^{2+} à $1,0.10^{-3}$ mol. L^{-1} . On fait barboter du sulfure d'hydrogène dans cette solution de telle sorte que $[H_2S] = 0,10$ mol. L^{-1} et on fait varier le pH, sans dilution, $[H_2S]$ restant constant.

- 1) Quel est le sulfure qui précipite en premier lorsqu'on élève le pH?
- 2) Calculer les valeurs du pH pour lesquelles chacun de ces deux sulfures commence à précipiter.
- 3) Calculer le pH pour lequel 99% du sulfure qui précipite en premier sont formés. Le second sulfure est-il, pour ce pH, partiellement précipité ?

Données :
$$pK_{A1}(H_2S) = 7.0$$
; $pK_{A2}(H_2S) = 13.0$; $pK_s(NiS) = 22.8$; $pK_s(ZnS) = 21.0$.


Exercice 7: Dosage d'un mélange de cations en milieu acide

Le graphe ci-dessous (Figure 1) représente le dosage de $V_0 = 10,0$ mL d'une solution d'acide nitrique de concentration C_1 , de nitrate de cuivre (II) de concentration C_2 et de nitrate d'argent de concentration C_3 par de la soude à $C_s = 0,100$ mol.L⁻¹.

Un test préliminaire, effectué en tube à essais sur la solution, montre que, lors de l'ajout de la soude, le premier précipité qui se forme a une couleur bleue, le second étant brun.

- 1) Identifier les diverses parties du graphe et en déduire les concentrations C_1 , C_2 et C_3 .
- 2) À l'aide de points bien choisis sur le graphe, déterminer le produit de solubilité des hydroxydes de cuivre et d'argent.
- 3) Dans 10,0 mL de solution de nitrate de cuivre à 4,0.10⁻² mol. L⁻¹, on introduit, sans variation de volume, 5,0.10⁻⁴ mol d'hydroxyde d'argent et on agite ; déterminer la composition finale du système ainsi que son pH.

Figure 1:

